Friday, December 7, 2012

Concept Mapping of Geologic Processes

Our Concept Map:
 


      The three cycles shown in the concept map, the nitrogen cycle, the phosphate cycle and the carbon cycle are all different and important in their own way, being major categories with numerous inter-relations, as the concept map shows. The nitrogen cycle is the process by which nitrogen is converted between its various chemical forms. This transformation can be carried out through both biological and physical processes. Important processes in the nitrogen cycle include fixation, mineralization, nitrification, and dentrification. Also, human activities such as fossil fuel combustion, use of artificial nitrogen fertilizers, and release of nitrogen in waste water have dramatically altered the global nitrogen cycle. The phosphate cycle is important, because it is essential to both plants and animals, which includes humans, because of their importance in terms of developing healthy seeds, root growth, and stem strength for plants and developing healthy bones (works with Ca to build bone tissue) for animals (humans). Phosphorus is released from rock into the soil by a process called weathering. In land phosphorous is cycled by plants which take up phosphate through their roots, animals who eat the plants (get phosphate) and decomposers who return it to the soil. Phosphorous also gets cycled through our waterways by getting into the water by erosion, leaching, run-off with most settles at the bottom (turns into sediment), while some phosphate is taken up by aquatic plants. Humans affect the P cycle in a number of ways, such as, mining phosphate rock (for fertilizers and detergents),making fertilizers and detergents (industrial waste), applying fertilizer to land and by fishing. The carbon cycle is the biogeochemical cycle by which carbon is exchanged among the biosphere, pedosphere, geosphere, hydrosphere, and atmosphere of the Earth. The carbon cycle comprises a sequence of events that are key to making the Earth capable of sustaining life; it describes the movement of carbon as it is recycled and reused throughout the biosphere. Human activity has modified the carbon cycle by changing its component's functions and directly adding carbon to the atmosphere, with the largest and most direct human influence on the carbon cycle being through direct emissions from burning fossil fuels, which transfers carbon from the geosphere into the atmosphere.

     We hypothesize that the concentrations of nitrate and phosphate (both found in fertilizer) will decrease the further into a state nature reserve (like the ones around here, surrounded by farmland) one tests using core samples. We cause anthropogenic changes (an example of a forcing) to the soil of the nature preserve, which is shown in both our conceptual map and the Brantley conceptual map, which contributes to our hypothesis. These additions of nitrate and phosphate from fertilizing of farmland causes change to the wildlife presence in the wetlands. This change of the wildlife presence causes alterations to the carbon cycle, by causing a change in the plant population, which directly sequesters carbon dioxide. We expect that our wetland will respond similarly if not in the same way as other wetlands that are surrounded by farmland. We would also expect that our wetland will have a more exaggerated response to fluxes of nitrate and phosphate, characteristic of a small scale wetland.
- Stefan Latham, Evan Amstutz, and Andrew Fuss

1 comment:

  1. This concept map is amazing! Much Credit to Evan for carrying out this detailing. The hypothesis you determined from your concept map makes sense and it is nice to see clear interactions between the hydro, geo, and biosphere.

    I'm not sure what is meant by decrease the further into a state nature (p)reserve, this aspect of the post might need clarification.

    Thank you for linking fertilization to plant production to carbon dioxide draw down. Seeing this link is key to connecting biology to geology. Nice Work!

    ReplyDelete